1950

Refinement

$\Delta \rho_{\rm max} = 0.211 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.176 \ {\rm e} \ {\rm \AA}^{-3}$
Extinction correction:
SHELXL93 (Sheldrick,
1993)
Extinction coefficient:
0.0047 (12)
Atomic scattering factors
from International Tables
for Crystallography (1992,
Vol. C, Tables 4.2.6.8 and
6.1.1.4)

 Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$$U_{\rm eq} = (1/3) \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* \mathbf{a}_i . \mathbf{a}_j.$$

	х	у	Ζ	U_{eq}
Si1	0.1246 (2)	0.78695 (15)	0.20606 (11)	0.0546 (7)
01	-0.0369 (6)	0.7720 (4)	0.0152 (2)	0.065 (2)
02	0.1262 (5)	0.6910 (3)	0.1658 (2)	0.0525 (14)
O3	0.1054 (7)	0.4455 (4)	0.0132 (3)	0.100 (3)
O4	0.2803 (6)	0.4099 (3)	0.0725 (2)	0.063 (2)
N1	0.0914 (7)	0.7677 (5)	0.0154 (3)	0.055 (2)
N2	0.1858 (7)	0.5468 (4)	0.0802 (3)	0.059 (2)
Cl	0.1579 (10)	0.6998 (7)	0.0374 (4)	0.057 (2)
C2	0.0907 (8)	0.6208 (5)	0.0685 (4)	0.049 (2)
C3	0.0258 (8)	0.6509 (5)	0.1274 (4)	0.052 (2)
C4	-0.0431 (11)	0.5714 (7)	0.1594 (5)	0.075 (3)
C5	0.1614 (9)	0.8486 (6)	-0.0107 (4)	0.067 (3)
C12	0.1836 (9)	0.4668 (6)	0.0505 (4)	0.059 (3)
C13	0.3025 (10)	0.3178 (6)	0.0456 (4)	0.065 (3)
C14	0.3316 (21)	0.3272 (12)	-0.0206 (5)	0.140 (6)
C15	0.4256 (9)	0.2841 (6)	0.0796 (5)	0.083 (3)
C16	0.1822 (12)	0.2566 (8)	0.0570 (9)	0.122 (5)
C17	0.1880 (9)	0.7518 (6)	0.2820 (4)	0.060 (2)
C18	0.3295 (10)	0.7140 (9)	0.2736 (5)	0.094 (3)
C19	0.1073 (14)	0.6734 (7)	0.3090 (5)	0.092 (3)
C20	0.1950 (13)	0.8346 (8)	0.3262 (4)	0.093 (3)
C6	0.1243 (8)	0.8702 (6)	-0.0730 (4)	0.052 (2)
C7	0.0612 (9)	0.9496 (7)	-0.0878 (6)	0.074 (3)
C8	0.0371 (11)	0.9726 (8)	-0.1475 (7)	0.090 (3)
C9	0.0711 (11)	0.9128 (10)	-0.1930 (6)	0.087 (3)
C10	0.1299 (11)	0.8309 (9)	-0.1781 (5)	0.086 (3)
C11	0.1576 (9)	0.8087 (6)	-0.1174 (5)	0.068 (3)
C21	0.2363 (9)	0.8712 (6)	0.1683 (4)	0.056 (2)
C22	0.3434 (9)	0.8423 (7)	0.1335 (4)	0.063 (2)
C23	0.4251 (10)	0.9048 (9)	0.1038 (5)	0.078 (3)
C24	0.4053 (12)	0.9988 (9)	0.1094 (5)	0.089 (3)
C25	0.3016 (13)	1.0286 (8)	0.1455 (5)	0.096 (4)
C26	0.2204 (11)	0.9667 (6)	0.1746 (4)	0.074 (3)
C27	-0.0437 (8)	0.8425 (6)	0.2073 (5)	0.058 (2)
C28	-0.0941 (9)	0.8828 (6)	0.1557 (5)	0.065 (3)
C29	-0.2168 (11)	0.9262 (6)	0.1530 (6)	0.079 (3)
C30	-0.2891 (11)	0.9334 (7)	0.2036 (7)	0.090 (3)
C31	-0.2455 (12)	0.8969 (8)	0.2558 (7)	0.100 (4)
C32	-0.1233(11)	0.8504 (7)	0.2581 (5)	0.078 (3)

Table 2	Selected	geometric	parameters ((Å.	0
---------	----------	-----------	--------------	-----	---

-4010						
01—N1	1.285 (8)	C1C2	1.480 (11)			
O2C3	1.431 (8)	C1—H1	0.86 (6)			
N1C1	1.271 (10)	C2C3	1.510 (10)			
N1C5	1.467 (9)	C3C4	1.503 (10)			
C1-N1-01	124.1 (8)	N1-C1-H1	125 (4)			
C1-N1-C5	120.0 (7)	C2C1H1	113 (4)			
O1-N1-C5	115.9 (7)	N2C2C1	109.9 (7)			
N1C1C2	121.3 (8)	C1C2C3	112.0 (7)			
C2C1N1C5	175.0 (7)	H1-C1-N1-01	-175 (5)			

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved Data collection: XSCANS (Siemens, 1992). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXL93. Software used to prepare material for publication: SHELXL93.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: NA1167). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- -

- Dondoni, A., Franco, S., Junquera, F., Merchan, F. L., Merino, P. & Tejero, T. (1994). Synth. Commun. 24, 2537–2550.
- Dondoni, A., Merchan, F. L., Merino, P., Tejero, T. & Bertolasi, V. (1994). J. Chem. Soc. Chem. Commun. pp. 1731–1733.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Siemens (1992). XSCANS. X-ray Single Crystal Analysis System. Version 2.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1995). C51, 1950–1953

Two Products of Ring Opening Reactions of an Arylthionitrooxirane

WILLIAM CLEGG,* JOANNA M. DUNBAR, MARK R. J. ELSEGOOD, RICHARD F. W. JACKSON AND NICHOLAS J. PALMER

Department of Chemistry, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, England

(Received 7 February 1995; accepted 23 March 1995)

Abstract

Crystal structure determination of the products, S-(4methylphenyl) (αR , 4R)- α -bromo-2,2-dimethyl-1,3dioxolane-4-thioacetate, C₁₄H₁₇BrO₃S, (2), and S-(4methylphenyl) (αR , 4R)- α -(benzyloxycarbonylamino)-2,2-dimethyl-1,3-dioxolane-4-thioacetate, C₂₂H₂₅NO₅S, (3), of the two reactions, including absolute-structure assignment, shows that they proceed stereospecifically with inversion of configuration. Common groups of the two structures have essentially the same bond lengths and angles, but different conformations, arising from weak hydrogen bonding and van der Waals interactions.

Comment

The title compounds, (2) and (3), were synthesized as part of an investigation into methods of synthesizing β -hydroxy- α -amino acid derivatives via oxirane intermediates (Jackson, Palmer, Wythes, Clegg & Elsegood, 1995; Ashwell, Jackson & Kirk, 1990). Both compounds were prepared from the arylthionitrooxirane (1), which has been structurally characterized by X-ray diffraction, establishing its syn configuration and enantiomeric purity (Jackson et al., 1995). The results show that both ring-opening reactions proceed stereospecifically with inversion of configuration, and confirm the suitability of this type of reaction for the facile synthesis of diastereoisomerically pure, fully protected γ -hydroxythreonine derivatives such as (3).

Each structure is of an optically pure isomer, with the same absolute stereochemistry for both molecules. There are no major differences in the bond lengths and angles for the common portions of the molecular structures, the largest difference being in the C1-C2-C3 angle at the C atom bearing the two different substituents. The conformations about the S-C and C-C bonds in the C-S-C-C-C chain are quite different in the two structures, but the two dioxolane rings are both envelopes with O2 as the flap atom.

The N-H group in structure (3) is suitably oriented for hydrogen-bond formation with the C1=O1 carbonyl group in the neighbouring molecule, with $N - H \cdots O$ and C—O···H angles of 155 (6) and $128 (2)^{\circ}$, respectively; however, this hydrogen bond is not very strong, the $O \cdots H$ and $O \cdots N$ separations being 2.26(6) and 2.989 (14) Å, respectively (these geometric parameters

Fig. 1. Structure of compound (2) with 40% probability ellipsoids.

Fig. 2. Structure of compound (3) with 40% probability ellipsoids.

are based on a free refinement of the N-H H atom). With only translational symmetry present in the space group P1, these weak hydrogen bonds link the molecules to form chains parallel to the a axis. There are no particularly short intermolecular contacts in the structure of (2).

Experimental

The syntheses of the two title compounds have been reported (Jackson, Palmer, Wythes, Clegg & Elsegood, 1995). Compound (2) was recrystallized by slow cooling from petrol (40-60° fraction). Compound (3) was recrystallized by diffusion of pentane into a solution in ethyl acetate.

Compound (2)

Crystal data

a =h =

c =

$C_{14}H_{17}BrO_3S$	Mo $K\alpha$ radiation
$M_r = 345.25$	$\lambda = 0.71073 \text{ Å}$
Orthorhombic	Cell parameters from 32
P212121	reflections
a = 6.8923(11) Å	$\theta = 11.11 - 12.14^{\circ}$
b = 12.836(2) Å	$\mu = 2.809 \text{ mm}^{-1}$
c = 17.387(3) Å	T = 240 (2) K
$V = 1538.2 (4) \text{ Å}^3$	Thick plate
Z = 4	$0.52 \times 0.48 \times 0.20 \text{ mm}$
$D_x = 1.491 \text{ Mg m}^{-3}$	Colourless

Data collection

Stoe Siemens diffractometer ω/θ scans with on-line profile fitting (Clegg, 1981) Absorption correction: semi-empirical using azimuthal scans applied $l = -20 \rightarrow 20$ with SHELXTL (Sheldrick, 1990) $T_{\min} = 0.172, T_{\max} =$ 0.328

4066 measured reflections

- 2698 independent reflections 2119 observed reflections $[I > 2\sigma(I)]$ $R_{\rm int} = 0.0476$ $\theta_{\rm max} = 24.98^{\circ}$ $h = -8 \rightarrow 8$ $k = -15 \rightarrow 15$
- 3 standard reflections frequency: 60 min intensity decay: none

C14H17BrO3S AND C22H25NO5S

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (2)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	Z	U_{eq}
Br	1.04505 (8)	0.61449 (4)	0.23332 (3)	0.0586 (2)
S	0.5406 (2)	0.51613 (9)	0.28630 (7)	0.0530(3)
01	0.8270 (6)	0.5135 (3)	0.3883 (2)	0.0604 (10)
O2	0.7538 (5)	0.8892 (3)	0.3352 (2)	0.0479 (8)
O3	0.7570 (6)	0.7488 (2)	0.4152 (2)	0.0528 (9)
C1	0.7510 (7)	0.5566 (3)	0.3347 (3)	0.0381 (10)
C2	0.8291 (6)	0.6575 (3)	0.2991 (3)	0.0380 (10)
C3	0.9055 (7)	0.7327 (3)	0.3598 (3)	0.0470 (12)
C4	0.9385 (7)	0.8423 (3)	0.3262 (3)	0.0476 (11)
C5	0.6781 (9)	0.8513 (4)	0.4063 (3)	0.0538 (13)
C6	0.7424 (13)	0.9181 (5)	0.4730 (4)	0.084 (2)
C7	0.4610 (10)	0.8426 (5)	0.3982 (4)	0.079 (2)
C8	0.4658 (7)	0.4029 (3)	0.3377 (2)	0.0385 (9)
C9	0.2843 (8)	0.4036 (4)	0.3706 (3)	0.0457 (12)
C10	0.2141 (8)	0.3144 (4)	0.4064 (3)	0.0478 (12)
C11	0.3262 (8)	0.2251 (3)	0.4106 (3)	0.0460 (12)
C12	0.5064 (8)	0.2253 (3)	0.3771 (3)	0.0515 (13)
C13	0.5781 (8)	0.3143 (3)	0.3399 (3)	0.0508 (13)
C14	0.2463 (10)	0.1283 (4)	0.4500 (3)	0.067 (2)

Table 2. Selec	ted geometri	ic parameters (Å	, °) for (2)	
Br—C2	1.956 (5)	O3C5	1.432 (6)	
S—C1	1.755 (5)	C1-C2	1.533 (6)	
S—C8	1.783 (4)	C2—C3	1.525 (6)	Та
01—C1	1.203 (6)	C3—C4	1.540 (6)	14
O2—C4	1.417 (6)	C5—C7	1.507 (9)	
02—C5	1.427 (6)	C5—C6	1.509 (9)	
O3C3	1.420 (6)			
C1SC8	103.9 (2)	03C3C4	103.3 (4)	
C4—O2—C5	106.2 (4)	C2-C3-C4	111.5 (4)	
C3—O3—C5	109.5 (4)	O2-C4-C3	102.4 (4)	3
01—C1—C2	123.3 (4)	O2-C5-O3	105.5 (4)	01
01—C1—S	126.5 (3)	O2-C5-C7	108.0 (5)	02
C2—C1—S	110.2 (3)	O3-C5-C7	108.6 (5)	03
C3C2C1	112.0 (4)	O2-C5-C6	111.4 (5)	04
C3—C2—Br	108.7 (3)	O3-C5-C6	109.1 (5)	N N
C1—C2—Br	105.4 (3)	C7—C5—C6	113.9 (6)	
D3—C3—C2	108.2 (4)			
C8-S-C1-01	2.6 (5)	C5-02-C4-C3	36.5 (5)	C3
C8SC1C2	-177.5 (3)	03_C3_C4_02	-28.8(5)	C4
D1—C1—C2—C3	-39.1 (6)	C2-C3-C4-02	87.2 (5)	C5
S—C1—C2—C3	141.0 (3)	C4-02-C5-03	-30.8(5)	C6
C5O3C3C2	-107.6 (4)	C3-03-C5-02	11.3 (5)	C7
C5O3C3C4	10.7 (5)	C1—S—C8—C9	120.7 (4)	C8
C1—C2—C3—O3	-53.6 (5)	C1-S-C8-C13	-64.3 (4)	C9
C1—C2—C3—C4	- 166.6 (4)			C10
•	-			

ţ	Data collection	ı
	Stoe Siemens	d

Stoe Siemens diffractometer	1492 observed reflections
ω/σ scans with on-line	$[I > 2\sigma(I)]$
profile fitting (Clegg,	$\theta_{\rm max} = 22.53^{\circ}$
1981)	$h = -5 \rightarrow 6$
Absorption correction:	$k = -9 \rightarrow 9$
none	$l = -8 \rightarrow 11$
1606 measured reflections	5 standard reflections
1606 independent reflections	frequency: 60 min
	intensity decay: 6%

Refinement

C10

Refinement on F^2	$\Delta \rho_{\rm max} = 0.226 \ {\rm e} \ {\rm \AA}^{-3}$
$R[F^2 > 2\sigma(F^2)] = 0.0431$	$\Delta \rho_{\rm min} = -0.240 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.1246$	Extinction correction: none
S = 1.121	Atomic scattering factors
1606 reflections	from International Tables
268 parameters	for Crystallography (1992
$w = 1/[\sigma^2(F_o^2) + (0.0647P)^2]$	Vol. C, Tables 4.2.6.8 and
+ 0.3010P]	6.1.1.4)
where $P = (F_o^2 + 2F_c^2)/3$	Absolute configuration:
$(\Delta/\sigma)_{\rm max} < 0.001$	x = -0.03 (14) (Flack,
	1983)

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (3)

 $U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i . \mathbf{a}_j.$

x	у	Z	U_{eq}
0.1784 (2)	0.96466 (15)	0.03797 (12)	0.0370 (4)
-0.2412 (6)	0.8254 (4)	0.1579 (3)	0.0294 (9)
0.3720 (6)	0.5569 (4)	0.3988 (4)	0.0329 (9)
0.0338 (6)	0.6623 (4)	0.4958 (3)	0.0334 (9)
0.1314 (6)	1.1347 (4)	0.3364 (4)	0.0351 (9)
0.5351 (6)	1.0932 (4)	0.2724 (4)	0.0293 (8)
0.2700 (8)	0.9094 (5)	0.2909 (4)	0.0259 (10)
-0.0458 (9)	0.8688 (6)	0.1688 (5)	0.0264 (12)
0.0328 (8)	0.8483 (6)	0.2982 (5)	0.0256 (11)
0.0082 (9)	0.6776 (6)	0.3648 (5)	0.0286 (12)
0.2104 (9)	0.5755 (6)	0.3110 (6)	0.0318 (12)
0.2241 (10)	0.5564 (6)	0.5202 (5)	0.0338 (13)
0.1112 (16)	0.4008 (8)	0.5857 (8)	0.066 (2)
0.3751 (12)	0.6178 (9)	0.5997 (7)	0.054 (2)
0.0178 (9)	0.9875 (6)	-0.0911 (5)	0.0309 (13)
-0.1812 (10)	1.0839 (7)	-0.0956 (6)	0.0389 (14)
-0.2989 (10)	1.1047 (7)	-0.2000 (6)	0.0393 (14)

(1992,

C11	-0.2214 (10)	1.0318 (7)	-0.2976 (5)	0.0341 (13)
C12	-0.0221 (10)	0.9369 (7)	-0.2927 (6)	0.0369 (14)
C13	0.0969 (10)	0.9147 (6)	-0.1894 (6)	0.0346 (13)
C14	-0.3474 (11)	1.0573 (9)	-0.4128 (6)	0.050 (2)
C15	0.2966 (8)	1.0527 (6)	0.3031 (5)	0.0249 (12)
C16	0.5894 (9)	1.2495 (6)	0.2720 (5)	0.0304 (12)
C17	0.5988 (9)	1.3531 (6)	0.1416 (6)	0.0310 (13)
C18	0.7802 (12)	1.4614 (8)	0.0971 (7)	0.050 (2)
C19	0.7933 (15)	1.5640 (9)	-0.0208 (7)	0.064 (2)
C20	0.6258 (13)	1.5558 (7)	-0.0965 (7)	0.050 (2)
C21	0.4426 (12)	1.4465 (8)	-0.0515 (7)	0.050 (2)
C22	0.4281 (11)	1.3468 (7)	0.0665 (7)	0.043 (2)

Table 4. Selected geometric parameters (Å, °) for (3)

SC8	1.782 (6)	O5-C16	1.455 (7)
SC1	1.783 (5)	N—C15	1.348 (7)
01—C1	1.208 (6)	N—C2	1.434 (7)
O2—C5	1.416 (7)	N—H1	0.79 (6)
O2—C4	1.419 (7)	C1—C2	1.528 (7)
O3—C5	1.429 (7)	C2—C3	1.549 (7)
O3—C3	1.438 (7)	C3—C4	1.544 (7)
04C15	1.214 (6)	C5-C7	1.518 (9)
O5—C15	1.351 (6)	C5—C6	1.524 (9)
C8-S-C1	101.1 (2)	O3—C3—C4	104.0 (4)
C5—O2—C4	106.0 (4)	O3—C3—C2	108.0 (4)
C5—O3—C3	108.3 (4)	C4C3C2	115.1 (4)
C15-05-C16	116.1 (4)	O2C4C3	103.4 (4)
C15—N—C2	120.9 (4)	O2—C5—O3	105.7 (4)
C2—N—H1	119 (4)	02—C5—C7	108.3 (5)
C15—N—H1	120 (4)	O3—C5—C7	107.7 (5)
01—C1—C2	122.9 (5)	O2—C5—C6	112.3 (5)
01—C1—S	124.2 (4)	O3—C5—C6	109.1 (5)
C2-C1-S	112.9 (4)	C7—C5—C6	113.5 (6)
N—C2—C1	114.3 (4)	04—C15—N	125.4 (5)
N—C2—C3	112.8 (4)	O4—C15—O5	124.4 (5)
C1—C2—C3	108.1 (4)	N-C15-O5	110.2 (4)
C8SC1O1	5.4 (5)	C5-02-C4-C3	33.4 (5)
C8SC1C2	-173.8 (3)	O3—C3—C4—O2	-18.8 (5)
O1-C1-C2-C3	54.4 (6)	C2-C3-C4-O2	99.2 (5)
S-C1-C2-C3	-126.3 (4)	C4O2C5O3	-36.0 (5)
C5O3C3C4	-2.4 (5)	C3-03-C5-02	23.1 (5)
C5—O3—C3—C2	-125.2 (4)	C1SC8C13	-114.9 (4)
C1—C2—C3—O3	- 168.5 (4)	C1—S—C8—C9	67.8 (5)
C1—C2—C3—C4	75.8 (5)		

The measured data set for (2) consisted of an octant, a complete set of Friedel opposites and a further octant equivalent to the first, thus producing the overall index limits given. For (3), the measured data set consisted of a complete sphere of reflections to the specified angle limit.

Isotropic H atoms were refined with a riding model for both compounds, including a parameter for rotation of each methyl group about the C—C bond.

For both compounds, data collection: *DIF*4 (Stoe & Cie, 1990); cell refinement: *DIF*4; data reduction: local programs; program(s) used to solve structures: *SHELXTL* (Sheldrick, 1990, 1994); program(s) used to refine structures: *SHELXL*93 (Sheldrick, 1993); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXL*93 and local programs.

We thank the UK EPSRC, Pfizer Central Research and Zeneca Pharmaceuticals for financial support.

References

Ashwell, M., Jackson, R. F. W. & Kirk, J. M. (1990). Tetrahedron, 21, 7429–7442.

- Clegg, W. (1981). Acta Cryst. A37, 22-28.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881
- Jackson, R. F. W., Palmer, N. J., Wythes, M. J., Clegg, W. & Elsegood, M. R. J. (1995). J. Org. Chem. Submitted.
- Sheldrick, G. M. (1990). SHELXTL. Version 4. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.

Sheldrick, G. M. (1994). SHELXTL. Version 5. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Stoe & Cie (1990). DIF4. Diffractometer Control Program. Version 7.04. Stoe & Cie, Darmstadt, Germany.

Acta Cryst. (1995). C51, 1953–1955

p-(4,6-Diamino-*s*-triazin-2-yl)aminophenylarsonic Acid Dihydrate

GORDON A. LEONARD AND WILLIAM N. HUNTER*

Department of Chemistry, University of Manchester, Manchester M13 9PL, England

BRADLEY J. BERGER[†] AND ALAN H. FAIRLAMB

Department of Medical Parasitology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, England

(Received 11 October 1994; accepted 8 March 1995)

Abstract

The structure of the title compound, $C_9H_{11}AsN_6O_3$.-2H₂O, contains a planar organic moiety bonded to pentavalent arsenic. The lattice is stabilized by a combination of aromatic stacking interactions and by a hydrogen-bonding network involving water molecules of crystallization.

Comment

Melarsamine hydrochloride (trade name Cymelarsen) is a water-soluble trivalent arsenical drug which finds use in the treatment of trypanosomal infection in some animals (Zweygarth & Kaminsky, 1990). A study of the properties of the drug in aerobic aqueous solution indicates that the compound is unstable, with a complex mode of dissociation (Berger & Fairlamb, 1994). This analysis was undertaken to identify the structure of a

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: BM1008). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[†] Present address: The Picower Institute for Medical Research, Manhasset, New York, NY 11030, USA.